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Departamento de Matemática, Universidade de Coimbra, Apartado 3008, 3001-454 Coimbra,
Portugal

E-mail: fpetalid@mat.uc.pt

Received 3 October 2001, in final form 14 January 2002
Published 1 March 2002
Online at stacks.iop.org/JPhysA/35/2505

Abstract
We establish a new, very close, relationship which links Jacobi structures and
homogeneous Poisson structures defined on the same manifold and study the
characteristic foliations of the related structures. Several examples of this
construction are also given.
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1. Introduction

The notion of a Jacobi structure on a manifold, introduced by Lichnerowicz in [14], includes
as particular cases important geometric structures, among which are the symplectic, co-
symplectic, Poisson, contact and locally conformal symplectic structures, and provides a new
framework for the study of these structures. Introducing also the notion of a homogeneous
Poisson manifold, Lichnerowicz [14] and Justino [8] set up a very close connection that
links these manifolds with the Jacobi manifolds, known as Poissonization. Dazord et al
[4], investigating this connection in detail, proved that: (1) a 1-codimensional submanifold
of a homogeneous Poisson manifold, transverse to the homothety vector field, possesses
a Jacobi structure induced by the homogeneous Poisson structure of the manifold and any
Jacobi manifold may be obtained in this manner; (2) a 1-codimensional submanifold of a
Jacobi manifold, transverse to the Jacobi vector field, possesses a homogeneous Poisson
structure induced by the Jacobi structure of the manifold and any homogeneous Poisson
manifold may be obtained in this manner.

It is remarkable that the above referred relations between Jacobi and homogeneous
Poisson manifolds concern manifolds whose dimensions differ by unity. In this paper, we
establish a new relation between these two structures on the same manifold. After a brief
review of the basic definitions and results on Jacobi manifolds (section 2), in section 3,
we prove that on any homogeneous Poisson manifold we may construct a Jacobi structure
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(proposition 3.4) and, in a converse sense, that on any Jacobi manifold we may build,
at least locally, a homogeneous Poisson structure (proposition 3.10). Related questions
on these constructions are studied and several examples are also presented. In the final
section (section 4), an extensive study of the characteristic foliations of the related Jacobi and
homogeneous Poisson manifolds is developed.

Notation. In this paper, M is a C∞-differentiable manifold of finite dimension n. We denote
by TM and T ∗M , respectively, the tangent and cotangent bundles over M, C∞(M,R) the
space of all real C∞-differentiable functions on M, �k(M), 0 � k � n, the space of all
exterior differentiable k-forms on M, and Vk(M), 0 � k � n, the space of all skew-symmetric
contravariant k-tensor fields on M. Also, �(M) = ⊕n

k=0�
k(M) and V(M) = ⊕n

k=0Vk(M)

denote, respectively, the algebras of all skew-symmetric covariant and contravariant tensor
fields on M.

For the Schouten bracket (cf [13, 24]) and the interior product of a form with a multi-vector
field, we use the convention of sign indicated by Koszul [11, 20].

2. Jacobi manifolds

A Jacobi manifold (M,
,E) is a C∞-differentiable manifold M of finite dimension endowed
with a bivector field 
 and a vector field E such that

[
,
] = −2E ∧ 
 and LE
 = [E,
] = 0 (1)

where [, ] denotes the Schouten bracket [11, 24] and L the Lie derivative operator. We say that
(
,E) defines a Jacobi structure on M.

Defining a Jacobi structure (
,E) on M is equivalent to defining an internal composition
law {, }(
,E) on C∞(M,R)

{f, g}(
,E) = 
(df, dg) + 〈f dg − gdf,E〉 f, g ∈ C∞(M,R) (2)

that is bilinear, skew-symmetric, and verifies, for all f, g, h ∈ C∞(M,R), the Jacobi identity{
f, {g, h}(
,E)

}
(
,E)

+
{
g, {h, f }(
,E)

}
(
,E)

+
{
h, {f, g}(
,E)

}
(
,E)

= 0

and the local condition

support{f, g}(
,E) ⊆ (support f ) ∩ (support g).

The bracket {, }(
,E) is called the Jacobi bracket associated with (
,E) and the space
C∞(M,R) endowed with the Jacobi bracket (2) is a local Lie algebra in the sense of
Kirillov [9]. Conversely, a local Lie algebra structure on C∞(M,R) yields a Jacobi structure
on M [6, 9].

A Jacobi manifold (M,
,E) on which the vector field E identically vanishes is called a
Poisson manifold [13, 26] and is denoted by (M,
). In this case, conditions (1) reduce to

[
,
] = 0

and its associated bracket {, }
 on C∞(M,R) is a Poisson bracket, i.e. it endows C∞(M,R)

with a Lie algebra structure and, for all f, g, h ∈ C∞(M,R), the Leibnitz rule holds:

{f, gh}
 = {f, g}
h + g{f, h}
.
We denote by 
#: T ∗M → TM the vector bundle map associated with 
, i.e. for all

sections α, β of T ∗M ,

〈β,
#(α)〉 = 
(α, β).
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This map can be seen as a homomorphism of C∞(M,R)-modules 
#: �1(M) → V1(M) and
it can be extended to a homomorphism, which we also denote by 
#, from the space �k(M)

onto the space Vk(M), k ∈ N, as follows:


#(f ) = f and 
#(σ )(α1, . . . , αk) = (−1)kσ (
#(α1), . . . ,

#(αk)) (3)

for all f ∈ C∞(M,R), σ ∈ �k(M) and α1, . . . , αk ∈ �1(M). Finally, we denote by
(
,E)#: T ∗M × R → TM × R the vector bundle map associated with (
,E), i.e. for all
sections α, β of T ∗M and for all f ∈ C∞(M,R),

(
,E)#(α, f ) = (
#(α) + fE,−〈α,E〉).
A vector field on (M,
,E) of type

Xf = 
#(df ) + fE f ∈ C∞(M,R) (4)

is called the Hamiltonian vector field associated with f and the function f is called the
Hamiltonian function of Xf . We remark that E is the Hamiltonian vector field of (M,
,E)

associated with the constant function 1.
The image Im
# of the vector bundle map 
# and vector field E define over M a

distribution with singularities, called the characteristic distribution of (M,
,E), which is
completely integrable, [3, 6, 9]. Therefore, the maximal integral submanifolds of 〈Im
#, E〉
form a Stefan foliation of M [25], called the characteristic foliation of (M,
,E). The
leaves of this foliation are called the characteristic leaves of the Jacobi structure (
,E)

of M. When, at a given point x ∈ M , E(x) ∈ Im
#(x) (respectively E(x) /∈ Im
#(x)),
then the same property holds at all points of the leaf which contains x. That leaf is then of
even (respectively odd) dimension. Obviously, the orbits of the Hamiltonian vector fields (4)
generate the characteristic leaves of (M,
,E). When E identically vanishes on M, i.e. 
 is a
Poisson tensor on M, the characteristic foliation of (M,
) is its symplectic foliation and the
characteristic leaves of (M,
) are its symplectic leaves [12].

If the characteristic distribution 〈Im
#, E〉 of a Jacobi manifold (M,
,E) coincides
with TM , (M,
,E) is said to be transitive. According to the parity of the dimension of M,
there are two kinds of transitive Jacobi manifolds:

(1) If M has odd dimension, (
,E) is defined by a contact 1-form (see [4, 14]).
(2) If M has even dimension, (
,E) is defined by a locally conformal symplectic structure

(see [4, 14]).

We note that the Jacobi structure of a Jacobi manifold induces a transitive Jacobi structure
on each of its characteristic leaves [4, 14].

Let a ∈ C∞(M,R) be a function that never vanishes on (M,
,E). We denote
by (
a,Ea) the pair formed on M by the bivector field 
a := a
 and the vector field
Ea := 
#(da)+ aE. It defines another Jacobi structure on M, which is said to be a-conformal
to that given initially. Its associated Jacobi bracket on C∞(M,R) is given by

{f, g}(
a,Ea) = 1

a
{af, ag}(
,E) ∀f, g ∈ C∞(M,R)

and, of course, it endows C∞(M,R) with a new local Lie algebra structure. The structures
(
,E) and (
a,Ea) are said to be conformally equivalent. The equivalence class of the
Jacobi structures on M that are conformally equivalent to a given Jacobi structure is called a
conformal Jacobi structure on M.

Let (M1,
1, E1) and (M2,
2, E2) be two Jacobi manifolds and φ: M1 → M2 a
differentiable map. If (
1, E1) and (
2, E2) are φ-related, i.e. at each point x ∈ M ,
Txφ(
1(x)) = 
2(φ(x)) and Txφ(E1(x)) = E2(φ(x)), then φ: M1 → M2 is said to be
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a Jacobi morphism or a Jacobi map. When φ: M1 → M2 is a diffeomorphism, the Jacobi
structures (
1, E1) and (
2, E2) are said to be equivalent.

A map φ: (M1,
1, E1) → (M2,
2, E2) is called an a-conformal Jacobi map if there
exists a function a ∈ C∞(M1,R) that never vanishes on M1 such that φ:

(
M1,


a
1, E

a
1

) →
(M2,
2, E2) is a Jacobi map.

A vector field X on a Jacobi manifold (M,
,E) is said to be an infinitesimal Jacobi
automorphism (respectively a conformal infinitesimal Jacobi automorphism) of (
,E) if its
flow defines Jacobi automorphisms (respectively conformal Jacobi automorphisms) on M.
This fact is equivalent to LX
 = [X,
] = 0 and LXE = [X,E] = 0 (respectively LX
 =
[X,
] = a
 and LXE = [X,E] = 
#(da) + aE, for a function a ∈ C∞(M,R)) [8].

For further details and expositions see, e.g., [14, 18, 19].

3. Homogeneous Poisson manifolds and Jacobi manifolds

Definition 3.1. A homogeneous Poisson manifold (M,
, T ) is a Poisson manifold (M,
)

equipped with a vector field T, called the homothety vector field, such that

LT
 = [T ,
] = −
.

The particular close relationships that exist between homogeneous Poisson manifolds and
Jacobi manifolds were already indicated and studied extensively in [4]. Precisely, Dazord
et al [4] have shown the following propositions.

Proposition 3.2 [4]. Let (M,
, T ) be a homogeneous Poisson manifold and � a submanifold
of M, of codimension 1, transverse to the homothety vector field T. Then, � has an induced
Jacobi structure (
�,E�) characterized by one of the following properties:

1. For any pair (f, g) of homogeneous functions of degree 1 with respect to T, defined on an
open subset O of M, the Jacobi bracket of f and g, restricted to � ∩ O, is the restriction
of the Poisson bracket of f and g to � ∩ O.

2. Let π : U → � be the projection on � of a tubular neighbourhood U of � in M such that,
for any x ∈ �, π−1(x) is a connected arc of the integral curve of T through x. Let a be a
function on U, equal to 1 on � and homogeneous of degree 1 with respect to T. Then, the
projection π is an a-conformal Jacobi map.

Proposition 3.3 [4]. Let (M,
,E) be a Jacobi manifold and N a 1-codimensional submanifold
of M transverse to E. Let π : U → N be the projection on N of a tubular neighbourhood U of
N in M such that, for any x ∈ N , π−1(x) is a connected arc of the integral curve of E through
x. Let η be the 1-form along N that verifies i(E)η = 1 and i(X)η = 0, for any vector field X
on M tangent to N. Then, there exists on N a unique Poisson structure such that π is a Jacobi
map; this structure, which is homogeneous with respect to the homothety vector field 
#(η),
is called the homogeneous Poisson structure induced on N by the Jacobi structure of M.

On the other hand, it is well known that with any Jacobi manifold (M,
,E) we may
associate a homogeneous Poisson manifold (M̃, 
̃, T̃ ) by setting

M̃ = M × R 
̃ = e−t

(

 +

∂

∂t
∧ E

)
and T̃ = ∂

∂t
(5)

where t is the canonical coordinate on the factor R, see [8, 14]. The manifold (M̃, 
̃, T̃ ) so
defined is called the Poissonization of the Jacobi manifold (M,
,E).
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We observe that the relations between homogeneous Poisson manifolds and Jacobi
manifolds mentioned above concern manifolds whose dimensions differ by unity. In the
following proposition, we establish another close relation between these two structures defined
on the same manifold.

Proposition 3.4. Let (M,
, T ) be a homogeneous Poisson manifold and E a vector field on
M such that

[E,
 − T ∧ E] = 0. (6)

Then, the pair (C,E), where

C := 
 − T ∧ E, (7)

defines a Jacobi structure on M.

Proof. By construction, the second condition of (1) holds. We compute

[C,C] = [
 − T ∧ E,
 − T ∧ E]

= [
,
] − 2[
,T ∧ E] + [T ∧ E, T ∧ E]

= −2[
,T ] ∧ E + 2T ∧ [
,E] − 2[T ,E] ∧ E ∧ T

= −2
 ∧ E − 2T ∧ ([E,
 − T ∧ E])
(6)(7)= −2E ∧ C.

Hence, (C,E) endows M with a Jacobi structure. �

Remark 3.5. Given a homogeneous Poisson manifold (M,
, T ) it is natural to ask about
the existence of a vector field E on M verifying (6). The answer is that such a vector
field always exists locally. For example, E may be a Hamiltonian vector field with respect
to 
 whose Hamiltonian function f is a homogeneous function with respect to T, i.e.
LTf = λf , λ ∈ R. Effectively, in this case, [E, T ] = [
#(df ), T ] = −[[
,f ], T ] =
[
, [T , f ]] + [f, [T ,
]] = [
,λf ] − [f,
] = (1 − λ)
#(df ) = (1 − λ)E. Hence,
[E,
 − T ∧ E] = 0.

Remark 3.6. It is easy to check that the Poisson bracket {, }
 and the Jacobi bracket {, }(C,E)

on C∞(M,R) coincide on the vector subspace of C∞(M,R) formed by the homogeneous
functions of degree 1 with respect to T, i.e. the functions f ∈ C∞(M,R) that verify LTf = f .

Remark 3.7. Under the assumption that the space M̂ = M/E of the integral curves of E has
the structure of a manifold for which the canonical projection π : M → M̂ is a submersion,
condition (6) assures that both the bivector fields 
 and C = 
 − T ∧ E are reduced via
(M,E) [21] to the same bivector field 
̂ on M̂ , i.e. 
̂ = π∗(
) = π∗(C), which is a Poisson
tensor. Hence, π : M → M̂ is simultaneously a Poisson and a Jacobi map. Moreover, if T is a
projectable vector field, its projection T̂ = π∗(T ) is a homothety vector field of 
̂ [22].

The relationship between the Poissonization (5) of the constructed Jacobi structure (C,E)

on M and the initially given Poisson structure 
 is studied in the next proposition.

Proposition 3.8. Under the same hypothesis and notations as in proposition 3.4, let (M̃, 
̃, T̃ )

be the Poissonization of the Jacobi structure (C,E) and π̃ : M̃ → M the projection of M̃ on
M parallel to the integral curves of ∂/∂t − T . Then, π̃ : (M̃, 
̃) → (M,
) is a Poisson map.

Proof. We identify M with the submanifold M × {0} of M̃ = M × R and remark that the
vector field ∂/∂t − T is transverse to M. Hence, M may be also seen as the set of the integral
curves of ∂/∂t −T . We consider the projection π̃ : M̃ → M of M̃ on M parallel to the integral
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curves of ∂/∂t − T that maps each point (x, t) of M̃ = M × R to the unique point x ′ of M
such that (x ′, 0) and (x, t) belong to the same integral curve of ∂/∂t − T . Since[

∂

∂t
− T , 
̃

]
= −e−t

(
∂

∂t
− T

)
∧ (E + [T ,E])

we have that 
̃ = e−t (
+ (∂/∂t−T )∧E) is projectable by π̃ and its projection is π̃∗(
̃) = 
.
�

In the following, we present some examples concerning the result of proposition 3.4.

Examples 3.9

1. Jacobi structures on vector spaces: First, we consider an orientable manifold M of
dimension n with a volume element ν and recall the following construction of the operator
D: V(M) → V(M) due to Koszul [11].

Given ν, it induces an isomorphism $: Vk(M) → �n−k(M), 0 � k � n, defined
by $(Q) = i(Q)ν, Q ∈ Vk(M), where i denotes the interior product of a form with a
multivector field on M. We introduce the operator D: V(M) → V(M)

D := −$−1 ◦ d ◦ $

(d being the exterior derivative of the differential forms). D is of degree −1 and of square 0,
it generates the Schouten bracket on V(M), i.e. for P ∈ Vp(M) and Q ∈ Vq(M),

[P,Q] = (−1)p(D(P ∧ Q) − D(P) ∧ Q − (−1)pP ∧ D(Q)) (8)

and it is a derivation of the Schouten bracket [10, 11]. For a vector field X on M,
D(X) = −divν(X), where divν denotes the divergence with respect to ν, and for a Poisson
tensor 
 on M, D(
) is its modular vector field that verifies [D(
),
] = 0 (see [10, 11] and
references therein).

Now, we assume that M = V is a vector space. Let 
 be a Poisson bivector on V

whose components are homogeneous polynomials of degree k, i.e. if (x1, . . . , xn) are linear
coordinates on V ,


ij (x) =
n∑

i1,...,is=1

c
i1···is
ij x

ni1
i1

· · · xnis

is
(x ∈ V )

with ni1 + · · · + nis = k (the quantities ci1···isij are constants, ci1···isij = −c
i1···is
j i and c

i1···im···ir ···is
ij =

c
i1···ir ···im···is
ij ), and let T = ∑n

i=1 xi∂/∂xi be the radial vector field on V . Then, 
 has a unique
decomposition 
 = C + T ∧ E, where C and E are, respectively, the D-exact homogeneous
2-tensor field and D-exact homogeneous vector field [17]. From (C,E) we derive a Jacobi
structure on V . Effectively, we have [T ,
] = (k − 2)
. But

[T ,
]
(8)= −(D(T ∧ 
) − D(T ) ∧ 
 + T ∧ D(
)).

Hence,

(k − 2)
 = −D(T ∧ 
) − n
 − T ∧ D(
)

and


 = − 1

n + k − 2
(D(T ∧ 
) + T ∧ D(
)). (9)

By putting

C = − 1

n + k − 2
D(T ∧ 
) and E = − 1

n + k − 2
D(
)
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we obtain the decomposition of 
 mentioned above. A simple computation yields

[E,C] = 0 and [C,C] = −2(2 − k)E ∧ C

(because E is the modular vector field of 
 and its components are homogeneous polynomials
of degree k − 1). Thus, the pair (C, (2 − k)E) defines a Jacobi structure on V .

We remark that:

(i) If 
 is a linear Poisson bivector, i.e. k = 1 (in this case, it is well known that the constants
cmij , i, j,m = 1, . . . , n, are the structural constants of a Lie algebra structure on the dual
space V ∗ of V and 
 is the Lie–Poisson structure on the dual V of the Lie algebra V ∗

[12, 20]), E is a constant vector field on V . Precisely, E is equal to the linear 1-form
− 1

n−1 tr(ad) on V ∗, where tr(ad): u ∈ V ∗ �→ tr(adu) and tr denotes the trace [11]. The
condition [E,C] = 0 is equivalent to the 1-cocycle condition for E.

(ii) If 
 is a quadratic Poisson bivector, i.e. k = 2, then its associated Jacobi structure
(C, (2 − k)E) = (C, 0) is a Poisson structure; it is exactly the one that appears in the
canonical decomposition of quadratic Poisson structures established in [15].

2. Linear Jacobi structures on vector bundles: We present the construction of a linear Jacobi
structure on the dual A∗ to a Lie algebroid (A, [[, ]], 2) over a differentiable manifold M given
in [7]. This structure may be viewed as a Jacobi structure associated with the homogeneous
linear Poisson structure on A∗, in the sense of proposition 3.4.

A Lie algebroid (A, [[, ]], 2) over a differentiable manifold M is a vector bundle
π : A → M endowed with a Lie algebra structure [[, ]] on its space 3(A) of the global
cross sections and with an anchor morphism 2: A → TM of vector bundles such that, if we
also denote by 2: 3(A) → V1(M) the homomorphism of C∞(M,R)-modules induced by the
anchor morphism, then, for every s1, s2 ∈ 3(A) and f ∈ C∞(M,R),

2([[s1, s2]]) = [2(s1), 2(s2)] and [[s1, f s2]] = f [[s1, s2]] +
(
L2(s1)f

)
s2.

We choose coordinates (x1, . . . , xn) on an open neighbourhood U of M and a local basis
of sections (e1, . . . , er ) of π : A → M in U. With respect to this choice, the bracket [[, ]] and
the anchor morphism 2 are determined by structure functions ckij , 2l

i ∈ C∞(U,R), as

[[ei, ej ]] =
r∑

k=1

ckij ek 2(ei) =
n∑

l=1

2l
i

∂

∂xl
.

Let (x1, . . . , xn, µ1, . . . , µr) be the induced linear coordinates on the dual bundle A∗, i.e.
µi = 〈·, ei〉, i = 1, . . . , r . By setting


 =
∑

1�i<j�r

r∑
k=1

ckijµk

∂

∂µi

∧ ∂

∂µj

+
r∑

i=1

n∑
l=1

2l
i

∂

∂µi

∧ ∂

∂xl
and T =

r∑
i=1

µi

∂

∂µi

we define a homogeneous Poisson structure on A∗ such that the Poisson bracket of linear
functions is again linear [2].

Next, we introduce the Lie algebroid cohomology complex with trivial coefficients [16]
whose space of all 1-cocycles is the set of the sections ϕ ∈ 3(A∗) that verify

〈ϕ, [[s1, s2]]〉 = L2(s1)〈ϕ, s2〉 − L2(s2)〈ϕ, s1〉 ∀s1, s2 ∈ 3(A).

We have that, if ϕ ∈ 3(A∗), ϕ = ∑r
i=1 ϕie

i with ϕi ∈ C∞(U,R) and (e1, . . . , er) the dual
basis of (e1, . . . , er), is a 1-cocycle, then its vertical lift [5] ϕv = ∑r

i=1 ϕi∂/∂µi satisfies

[
,ϕv] = 0 and [ϕv, T ] = ϕv.

Therefore, the pair (C,E), where

C = 
 − T ∧ ϕv and E = ϕv,
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is a Jacobi structure on A∗. The fact that the Jacobi bracket {, }(C,E) of linear functions on
A∗ is again linear [7] is an immediate consequence of remark 3.6 and the analogous result for
{, }
.

In particular, when M is a point, A is a Lie algebra G and 
 is the Lie–Poisson structure
on G∗ = A∗. By taking ϕ = tr(ad) ∈ G∗ = 3(G∗), tr(ad) : x ∈ G �→ tr(adx) where tr denotes
the trace, ϕv is the modular vector field of 
 and the obtained Jacobi structure on G∗ = A∗

coincides with the Jacobi structure of example 3.9.1 (for k = 1).
For further examples of linear Jacobi structures on vector bundles, see [7].

3. Jacobi structures on the cotangent bundle of a Lie group: Let G be a Lie group of
dimension n with Lie algebra (G, [, ]). We equip the cotangent bundle T ∗G of G with the
canonical symplectic Poisson structure 
, i.e. 
 is defined by the inverse of the differential of
the Liouville 1-form on T ∗G [12].

In order to facilitate certain calculations, we trivialize T ∗G and identify it with G∗ × G,
via the right trivialization of T ∗G (see [1, 12]). We fix a basis (X1, . . . , Xn) of the Lie
algebra G with structure constants ckij , i.e. [Xi,Xj ] = ∑n

k=1 c
k
ijXk, and consider the dual basis

(ξ1, . . . , ξn) in G∗. Let (x1, . . . , xn) be the associated linear coordinate functions on G∗. In
these coordinates the symplectic Poisson structure on G∗ × G induced by 
 via the right
trivialization of T ∗G, also denoted by 
, is given by (see [1])


 =
n∑

i=1

Ri ∧ ∂

∂xi
+

1

2

n∑
i,j,k=1

ckij xk
∂

∂xi
∧ ∂

∂xj

where Ri , i = 1, . . . , n, are the right invariant vector fields on G which take the values Xi

at the neutral element e of G. We observe that 
 is a homogeneous Poisson structure on
G∗ × G with respect to the vector field T = ∑n

i=1 xi∂/∂xi . Let E be a left invariant vector
field on G. Since, for any right invariant vector field R on G, [E,R] = 0 [12], we have that
[E,
 − T ∧ E] = 0. Thus, the pair (C,E) = (
 − T ∧ E,E) defines a Jacobi structure on
G∗ × G. The image of (C,E) by means of the inverse map of the right trivialization of T ∗G
endows T ∗G with a Jacobi structure.

A natural question which arises from the above study is: does any Jacobi structure on
M comes from a homogeneous Poisson structure on M, in the sense of proposition 3.4? The
answer is:

Proposition 3.10. Any Jacobi structure (C,E) on a differentiable manifold M may be seen, at
least locally, as a Jacobi structure associated with a homogeneous Poisson structure (
, T )

on M, in the sense of proposition 3.4.

Proof. Let (C,E) be a Jacobi structure on M. For each point p ∈ M such that E(p) �= 0,
there is an open neighbourhood U of p in M and a function f ∈ C∞(U,R) such that LEf = 1.
We take the Hamiltonian vector field T = C#(df ) + fE associated with f . It is a conformal
infinitesimal Jacobi automorphism of (C,E) whose conformity function is a = −LEf = −1
[8], i.e. [T ,C] = −C and [T ,E] = −E. We set


 := C + T ∧ E

and easily verify that [
,
] = 0. Obviously, T is a homothety vector field of
. Consequently,
(
, T ) defines a homogeneous Poisson structure on U and the restriction of the initially given
Jacobi structure (C,E) to U can be considered as the Jacobi structure associated with (
, T ,E)

in the sense of proposition 3.4. �
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Remark 3.11.

1. The function f considered in the above proof is a homogeneous function of degree 1
with respect to T = C#(df ) + fE and a Casimir function of 
 = C + T ∧ E =
C + C#(df ) ∧ E. The vector field C#(df ) is also a homothety vector field of 
. These
remarks imply that E is an infinitesimal Poisson automorphism of the constructed Poisson
structure 
.

2. Since LEf = 1 and LEdf = 0, at each point x ∈U , df (x) generates a 1-dimensional
subspace of T ∗

x U which is complementary to the annihilator 〈E(x)〉0 of the subspace
〈E(x)〉 of TxU generated by E(x). So, T ∗U = 〈E〉0 ⊕ 〈df 〉 and by duality TU =
ker df ⊕〈E〉. The vector sub-bundles ker df and 〈E〉 of T U being involutive, they define
two complementary foliations of U. Then, U can be identified with a product M̂ × I of
two manifolds; M̂ is interpreted by the set of the integral curves of E and I by the set of
the leaves of ker df . From remark 3.7 and the fact that f is a Casimir function of 
, we
get that 
 can be identified with the projection of C by π :U → M̂ . On the other hand,
by identifying M̂ with a 1-codimensional submanifold of U transverse to E, via a section
of π : U → M̂, (
,C#(df )) can be seen as the homogeneous Poisson structure induced
on M̂ by the Jacobi structure (C|U ,E|U) of U (see proposition 3.3).

Some characteristic examples of Jacobi structures and their associated homogeneous
Poisson structures on the same manifold are developed in the following.

Example 3.12.
1. Contact manifolds: Let M be a (2n+ 1)-dimensional differentiable manifold endowed
with a contact form ϑ , i.e. ϑ is a 1-form on M such that ϑ ∧ (dϑ)n �= 0 holds everywhere on
M. We consider on M the Reeb vector field E [23], which is defined by

i(E)ϑ = 1 and i(E) dϑ = 0

and the bivector field C whose associated vector bundle map C#: T ∗M → TM is defined, for
all sections α of T ∗M , by

i(C#(α))ϑ = 0 and i(C#(α)) dϑ = −(α − 〈α,E〉ϑ). (10)

Then, (C,E) defines a transitive Jacobi structure on M, determined by the contact form ϑ (see
[12, 14]).

We observe that dϑ is a presymplectic form of rank 2n on M and ker dϑ is a one-
dimensional distribution over M spanned by E. Let f be a function on an open neighbourhood
U of a point p ∈ M such that LEf = 1. Then, developing the same argumentation as in
remark 3.11.2, we have T ∗U = 〈E〉0 ⊕ 〈df 〉 and by duality T U = ker df ⊕ 〈E〉. Since
ker dϑ = 〈E〉, dϑ is a section of /\2〈E〉0 and defines an isomorphism dϑ?: ker df → 〈E〉0

given, for all X ∈ ker df , by dϑ?(X) = −i(X) dϑ . Thus, dϑ endows each integral manifold
of the involutive distribution ker df with a symplectic structure. Hence, we obtain a foliation
of U by symplectic manifolds. Let 
 be the Poisson structure on U whose symplectic foliation
coincides with that of the above. We have that ker
# = 〈df 〉 and, for all semi-basic forms
β on U (i.e. the forms β ∈ �1(U) such that i(E)β = 0), i(
#(β)) dϑ = −β. So, for all
α ∈ �1(U),

i(
#(α − 〈α,E〉ϑ)) dϑ = −(α − 〈α,E〉ϑ)
because α − 〈α,E〉ϑ is a semi-basic form on U. Taking into account the second condition of
(10) and the above remark, we obtain that, for all α ∈ �1(U),

i(C#(α)) dϑ = i(
#(α − 〈α,E〉ϑ)) dϑ
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which means that C#(α) − 
#(α − 〈α,E〉ϑ) ∈ ker dϑ , i.e. there exists g ∈ C∞(U,R) such
that

C#(α) − 
#(α − 〈α,E〉ϑ) = gE.

Precisely,

g = 〈ϑ,C#(α) − 
#(α − 〈α,E〉ϑ)〉 (10)= 〈α,
#(ϑ)〉.
Consequently, for all α ∈ �1(U),

C#(α) = 
#(α) − 〈α,E〉
#(ϑ) + 〈α,
#(ϑ)〉E. (11)

By setting T = −
#(ϑ), from (11) we get

C = 
 − T ∧ E.

Moreover, T is a homothety vector field of 
. Effectively,

[T ,
] = [−
#(ϑ),
] = −∂
(

#(ϑ)) = −
#(dϑ),

where ∂
 denotes the operator of the Lichnerowicz–Poisson cohomology of (U,
) [13] and

#: �k(U) → Vk(U), k ∈ N, is the homomorphism of C∞(U,R)-modules determined by
(3). A simple computation yields 
#(dϑ) = 
. Hence, we conclude that, at least locally, the
Jacobi structure (C,E) comes from the homogeneous Poisson structure (
, T ), in the sense
of proposition 3.4.

According to Darboux’s theorem [12], there exist canonical coordinates (x0, . . . , x2n) on
U such that

ϑ = dx0 +
n∑

k=1

x2k−1 dx2k and E = ∂

∂x0
.

Then,


 =
n∑

k=1

∂

∂x2k−1
∧ ∂

∂x2k
T =

n∑
k=1

x2k−1
∂

∂x2k−1

and C =
n∑

k=1

∂

∂x2k−1
∧

(
∂

∂x2k
− x2k−1

∂

∂x0

)
.

2. Locally conformal symplectic manifolds: Let (M,�,ω) be a locally conformal symplectic
manifold, that is, M is a 2n-dimensional manifold equipped with a non-degenerate 2-form �

and a closed 1-form ω, called the Lee 1-form, such that

d� + ω ∧ � = 0.

For any f ∈ C∞(M,R), the associated Hamiltonian vector field Xf is given by

i(Xf )� = −(df + fω).

Let E be the unique vector field and C the unique bivector field on M which are defined by

i(E)� = −ω and i(C#(α))� = −α, for all α ∈ �1(M). (12)

Then, (C,E) endows M with a transitive Jacobi structure [6]. Also denoting by C# the
extension (3) of the isomorphism C#: �1(M) → V1(M) of C∞(M,R)-modules defined by
(12), we have that

E = C#(ω) C = C#(�) and Xf = C#(df + fω) f ∈ C∞(M,R).

Let f be a function on an open neighbourhood U of a point p ∈ M , ω(p) �= 0, such that
i(Xf )ω = −1. We set

σ = � + (df + fω) ∧ ω

and consider the bivector field 
 = C#(σ ). Then, the pair (
, T ) = (C#(σ ),Xf ) defines a
homogeneous Poisson structure on U and the restriction of the Jacobi structure (C,E) on U
can be seen as a Jacobi structure associated with (
, T ), in the sense of proposition 3.4.
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4. Characteristic foliations of (Λ, T) and (C, E)

In this paragraph, and always in the context of proposition 3.4, we study the position of
the characteristic leaves of the Jacobi structure (C,E), given by (7), with respect to the
characteristic (symplectic) leaves of 
 and the extended characteristic leaves of (
, T ). First,
we recall the notion of an extended characteristic leaf of a homogeneous Poisson manifold
(M,
, T ) introduced in [4].

The extended characteristic distribution over a homogeneous Poisson manifold (M,
, T)

is the distribution over M that is generated by the image Im
# of 
#: T ∗M → TM and by
the homothety vector field T of 
. It is completely integrable [4] and defines a Stefan
foliation [25] of M, called the extended characteristic foliation of (M,
, T ). The leaves of
this foliation, denoted Sext, are called the extended characteristic leaves of (M,
, T ). If an
extended characteristic leaf Sext of (M,
, T ) is of even dimension, it is a symplectic leaf S of
(M,
, T ), T is tangent to S and its restriction T |S is a homothety vector field of the symplectic
Poisson structure of S. If Sext is of odd dimension 2k + 1, it is foliated by symplectic leaves
of (M,
, T ), all of dimension 2k. In this case, the vector field T |Sext is transverse to these
symplectic leaves and its flow ψ maps these symplectic leaves, one to the other, by conformal
symplectic transformations, i.e. the pull-back of the symplectic form of a symplectic leaf by
ψ is proportional to the symplectic form of another leaf.

Under the assumptions of proposition 3.4, we have

|rank
(x) − rank (T ∧ E)(x)| � rankC(x) � rank
(x) + rank (T ∧ E)(x) x ∈ M

(13)

and also

C# = 
# − 〈·, T 〉E + 〈·, E〉T ⇔ C# + 〈·, T 〉E = 
# + 〈·, E〉T
which means that the characteristic distribution 〈ImC#, E〉 of (M,C,E) and the extended
characteristic distribution 〈Im
#, T 〉 of (M,
, T ) have a common subdistribution F =
Im(C# + 〈·, T 〉E) = Im(
# + 〈·, E〉T ). Hence, the position of the characteristic leaves
of (M,C,E) with respect to the symplectic leaves of (M,
) and the extended characteristic
leaves of (M,
, T ) depends on the position of the vector fields T and E with respect to Im
#.

We consider an open neighbourhood U of a point in M, restrict the tensor fields 
, T, E
and C to U, and distinguish the following cases:

1. T ∈ Im
# and E ∈ Im
# on U. Then Im
# = 〈Im
#, T 〉, F ⊆ Im
#, ImC# ⊆ Im
#

and

F ⊆ 〈ImC#, E〉 ⊆ Im
#. (14)

Let τ and ε be two sections of T ∗U such that T = 
#(τ ) and E = 
#(ε).

• If 〈τ,E〉 = f �= −1 ⇔ 〈ε, T 〉 = −f �= 1, f ∈ C∞(U,R), we have that
T ∈ F , because T = 
#((1 + f )−1τ ) + 〈(1 + f )−1τ,E〉T , hence Im
# ⊆ F and
E = C#((1 + f )−1ε) ∈ ImC#. Consequently, F = Im
#, 〈ImC#, E〉 = ImC# and,
from (14), we get 〈ImC#, E〉 = Im
#. Therefore, in this case, the characteristic foliation
of (U,C,E) coincides with the extended characteristic foliation of (U,
, T ) which is
its symplectic foliation.

• If 〈τ,E〉 = −1 ⇔ 〈ε, T 〉 = 1, we have C#(τ ) = 0 and C#(ε) = 0. So τ, ε ∈ (ImC#)0,
where (ImC#)0 denotes the annihilator of ImC#, E /∈ ImC# (because, if E ∈ ImC#,
〈τ,E〉 = 0) and T /∈ 〈ImC#, E〉 (because, if T ∈ 〈ImC#, E〉, 〈ε, T 〉 = 0). Thus, at
each x ∈ U , rankC(x) = rank
(x) − 2, and the characteristic leaves of (U,C,E) are
of odd dimension and transverse to T. Taking into account (14), we conclude that each
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2k-dimensional symplectic leaf S of (U,
, T ), which is also an extended characteristic
leaf, is foliated by (2k − 1)-dimensional characteristic leaves C of (U,C,E) transverse
to T. The transitive Jacobi structure of each C coincides with the Jacobi structure induced
on C, seen as a 1-codimensional submanifold of S transverse to T, by the homogeneous
symplectic Poisson structure of S, in the sense of proposition 3.2.

2. T ∈ Im
# and E /∈ Im
# on U. Then F ⊆ Im
# = 〈Im
#, T 〉 and, at each x ∈ U ,
rankC(x) = rank
(x), which gives

dim ImC# = dim Im
# (15)

on U. Also, T ∈ F , because T = 
#(α) + 〈α,E〉T , where α is a section of the annihilator
(Im
#)0 of Im
# such that 〈α,E〉 = 1. This fact implies F = Im
# = 〈Im
#, T 〉 and
T = C#(α) ∈ ImC#. Moreover, E /∈ ImC#. Effectively, if E ∈ ImC#, 〈ImC#, E〉 = ImC#;
but Im
# = F ⊆ 〈ImC#, E〉; hence Im
# ⊆ ImC# = 〈ImC#, E〉 and, since (15) holds,
Im
# = 〈ImC#, E〉. The latter implies E ∈ Im
# on U, which is in contradiction with
our assumption. Consequently, in this case, the extended characteristic foliation of (U,
, T )

coincides with its symplectic foliation and the characteristic leaves of (U,C,E) are of odd
dimension. Any (2k + 1)-dimensional characteristic leaf C of (U,C,E) is foliated by 2k-
dimensional symplectic leaves S of (U,
, T ) transverse to E. The homogeneous symplectic
Poisson structure of each S coincides with the homogeneous Poisson structure induced on S,
considered as a 1-codimensional submanifold of C transverse to E, by the transitive Jacobi
structure of C, in the sense of proposition 3.3.

3. T /∈ Im
# and E ∈ Im
# on U. Then: (i) E ∈ ImC#, since E = C#(β), where β is a
section of the annihilator (Im
#)0 of Im
# such that 〈β, T 〉 = −1, so,

F ⊆ 〈ImC#, E〉 = ImC# (16)

and (ii) at each x ∈ U , rank C(x) = rank 
(x), hence (15) also holds. On the other
hand, we have that ker
# = ker(
# + 〈·, E〉T ), because ker
# ⊆ ker(
# + 〈·, E〉T )

and there is no ξ ∈ ker(
# + 〈·, E〉T ) such that ξ /∈ ker
# (if there was such ξ ,
we would have 
#(ξ) + 〈ξ,E〉T = 0, which gives: (i) if 〈ξ,E〉 = 0, 
#(ξ) = 0,
a result in contradiction with the assumption ξ /∈ ker
#, and (ii) if 〈ξ,E〉 �= 0,
T = −〈ξ,E〉−1
#(ξ) ∈ Im
#, a result in contradiction with the assumption T /∈ Im
#

on U). Thus, dimF = dim Im (
# + 〈·, E〉T ) = dim Im
# on U. Taking into account
(15) and the latter relation, (16) yields F = ImC# = 〈ImC#, E〉 on U. Also, we have
F = Im (
# + 〈·, E〉T ) ⊂ 〈Im
#, T 〉 on U. These facts mean that, at each point x ∈ U , the
characteristic leaf C of (U,C,E) through x intersects transversely the symplectic leaf S of
(U,
) through x, their intersection contains the integral curve of E passing by x, and both
leaves have the same even dimension. Also, each (2k+1)-dimensional extended characteristic
leaf Sext of (U,
, T ) is foliated simultaneously by 2k-dimensional characteristic leaves C
of (U,C,E) and 2k-dimensional symplectic leaves S of (U,
). Both foliations of Sext are
transverse to T. The transitive Jacobi structure of each C is the structure induced on C, seen as
a 1-codimensional submanifold of Sext transverse to T, by the homogeneous Poisson structure
of Sext, in the sense of proposition 3.2.

4. T /∈ Im
# and E /∈ Im
# on U. Then T ∈ F , since T = 
#(α) + 〈α,E〉T , where
α ∈ (Im
#)0 and 〈α,E〉 = 1. Hence, Im
# ⊂ F ⊆ 〈Im
#, T 〉 on U, which implies
F = 〈Im
#, T 〉 on U, because dim 〈Im
#, T 〉 = dim Im
# + 1.

• If there exists a pair (γ, δ) of 1-forms of (Im
#)0 verifying C(γ, δ) �= 0, we have
E = (C(γ, δ))−1(〈δ,E〉C#(γ ) − 〈γ,E〉C#(δ)) and T = (C(γ, δ))−1(〈δ, T 〉C#(γ ) −
〈γ, T 〉C#(δ)), i.e. E, T ∈ ImC# on U. So, ImC# = 〈ImC#, E〉 and

dim ImC# = dim Im
# + 2 (17)
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on U. Also, F ⊂ 〈ImC#, E〉, because E /∈ F (if E ∈ F , ImC# ⊆ F and
dim Im C# � dimF = dim Im
# + 1, a result in contradiction with (17)). Consequently,
each (2k + 2)-dimensional characteristic leaf C of (U,C,E) is foliated by (2k + 1)-
dimensional extended characteristic leaves Sext of (U,
, T ) transverse to E and each
Sext is foliated by 2k-dimensional symplectic leaves S of (U,
) transverse to T. The
homogeneous Poisson structure of each Sext is the structure induced on Sext, viewed as a
1-codimensional submanifold of C transverse to E, by the transitive Jacobi structure of C,
in the sense of proposition 3.3.

• If, for every pair (γ, δ) of 1-forms of (Im
#)0, C(γ, δ) = 0 (this case always arises
when, at each x ∈ U , corank
(x) = 1), we have that C#(γ ) and C#(δ) are collinear and
they are contained in the plane generated by T and E. Also, E /∈ ImC# on U. Effectively,
if E ∈ ImC# on U, 〈ImC#, E〉 = ImC# and ImC# is of even dimension greater than
dim Im
# + 1 on U, since F ⊆ 〈ImC#, E〉. Taking into account (13), the only possibility
is dim ImC# = dim Im
# + 2 on U, which implies dim(ImC#)0 = dim(Im
#)0 − 2
on U, i.e. there exists (γ, δ) ∈ (Im
#)0 × (Im
#)0 such that C(γ, δ) �= 0, a result
in contradiction with our assumption. Thus, 〈ImC#, E〉 is of odd dimension equal to
dim Im
# + 1 on U. Consequently, F = 〈Im
#, T 〉 = 〈ImC#, E〉 on U, which means
that the extended characteristic foliation of (U,
, T ) coincides with the characteristic
foliation of (U,C,E). Each (2k+ 1)-dimensional characteristic leaf Cof (U,C,E), which
is also an extended characteristic leaf Sext of (U,
, T ), is foliated by 2k-dimensional
symplectic leaves S of (U,
, T ) transverse to E and T. The homogeneous symplectic
Poisson structure of each S coincides with the structure induced on S, seen as a 1-
codimensional submanifold of C transverse to E, by the transitive Jacobi structure of C,
in the sense of proposition 3.3.

Remark 4.1. We note that our study on the characteristic foliations of (
, T ) and (C,E)

does not cover the singular points, i.e. the points x ∈ M such that E(x) ∈ Im
#(x), or
T (x) ∈ Im
#(x), and that any neighbourhood of x contains points y with E(y) /∈ Im
#(y),
or T (y) /∈ Im
#(y). This study will be the subject of further research.
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